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DISPERSION OF NONLINEAR SPATIAL WAVES IN A ROD* 

A.Iu. BELIAEV 

A nonlinear generalization of the dispersion equations of three-dimensional oscil- 
lations is constructed for an inextensible rod. The dispersion equationis obtained 
for waves of any amplitude in the closed form,containing a solution of a certain 
system of two transcendental equations. For small amplitudes the final relationships 
are given in explicit form, taking into account the nonlinearity in the firstapprox- 
imation. The dispersion relation contains, just as in the linear case, the mean 
tensile force, the wave number and frequency, as well as the parameters defining the 
oscillation amplitudes. From the dispersion relation it follows that the larger the 
oscillation amplitude, the greater the wave velocity. The interaction of the trans- 
verse oscillations at different planes, absent in the linear case, is described,the 
characteristics of the "effective" rod computed and the corresponding averaged equa- 
tions constructed. A nonlinear generalization of the dispersion equation was con- 
structed earlier in /l/ for the plane oscillations of a compressible rod, for the 
case of small finite amplitudes.' An analogous problem was studied in /2/ for the 
oscillations of an inextensible rod for the case of finite amplitudes, and in addi- 
tion a concept of an "effective" rod was introduced, its characteristics computed, 
and the corresponding averaged equations constructed. The presentpapergeneralizes 
the results of /2/. 

1. Formulation of the problem. We consider, using the Cartesian coordinate s1,s2,2 
system, aninfinite homogeneous inextensible rod rectilinearinthe undeformed state.The elastic 
line of the rod is defined by the equations (5 is the rod axis arc length, and t is time) 

zi = ?+ (5, 1), i = I, 2, 3 
Let the inertia tensor of the transverse cross section of the rod I@ be spherical (5' is the 
area of transverse cross section and &R is the Kronecker delta) 

We shall regard the above equation as the definition of h which is of the order of the 
transverse cross section diameter. The Lagrangian of the rod relative to the area of trans- 
verse cross section S and Young's modulus E, has the form 

2h= h"r&55 - c;'r&, (co2= E/p) (1.1) 

Here p is density and the subscripts 5 and t denote differentiation with respect to 5 and t. 
The first term in (1.1) is the energy of the flexure and the second term denotes the kinetic 
energy of unit rod length. The condition of inextensibility has the form 

?&E = i 11.2) 

Weshallconsider the motionsofa special type of a rod, namely, let the functions rt(& t) be 
represented in the form 

r' = vi (E, t) + $' (8, 5, t) (1.3) 

where 8 is a function of 5 and t, and $* are 2n-periodic functions of 8. The above condi- 
tions do not restrict the generality of the argument. The assumptions concerning the character 
of the dependence of ” v,$, 0 in %, t introduce certain restrictions, and are as follows. Let 
the characteristic scales L and T of variation of the functions R1, O,, vti,va and $I' in E and t 
at constant 8 be much larger than the characteristic scales 1 and z of variation of the func- 
tions @@(t, E), t, 5) in E and t, respectively. In this manner we study the motions of a rod 
during which the rapid oscillations $', the characteristics of which oscillate slowly, are 
superimposed on the slow, smooth "background" d. The description of such motions is helped 
by the presence of a small parameter 6 = max(li& z/T}. In the zero approximation with respect 
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to this parameter the quantities 8,,8~,&', vti are constant and the motion represents a non- 

linear propagating wave. The next higher approximation yields the equations forthemodulation 
of these quantities, and derivationofthese equations is the aim of the present work. In ac- 

cordance with the Whitham method /3/ the averaged Lagrangian 

must be computed from the solutions of the propagating wave type. In what follows, we shall 
denote by symbol ( )the integral in 9 over the interval [0,2nl, referred to 2~. This yields 

a function of O,, 02, Uti, vi, and of other slowly varying quantities related to the wave ampli- 
tudes. The Euler equations for the action defined by the averaged Lagrangian are found to 
represent the required equations for the modulations. 

2. Averaged Lagrangian. Substituting (1.3) into (l.l), neglecting terms small in 
6 and integrating with respect to 0, we obtain the following expression for the averaged 
Lagrangian: 

The last term is proportional to 62, but it may also turn out to be important if e.g. the 
amplitude of the microoscillations is small. The condition of inextensibility (1.2) assumes 
the form 

Let us make the substitution Q'i+8,cp 

u~+e&=sinOcoscp, v~+O&=sinOsincp, $ + e& = cos 0 (2.1) 

The angles @ and mhave the sense of polar angles of the vector tangent to the rod. We also 
introduce the following notation: 

2y, = vfiv,e - 1, x = he;, a = e:c;*ey, ~g = (1 + 2~7~)“: CO s 0, 

1 
ue=(l + 2yv)'/l sin@,coscp,, vi= (1 + 2y,)“z sin@,sincp, 

G(O,O,,cp-- (p,)=cos8cos6, -t sinOsin@),cos(cp- mm) 

The expression for the averaged Lagrangian can now be written as 

(2h)= (x28: + ~.'sin* @& - 20~ [I f yV - (1 + 277,,)'/2 G (@.@,,cp - cp,)]) - C~2V~Vi~ f !t’L&Z‘iEE 

Since conditions of periodicity were imposed on the functions (i)', it follows that the 
Lagrangian will have to be supplemented by terms containing the Lagrange multipliers. Accord- 
ing to (2.1) the extra terms can be written in the form 

2ah(cos6- vi>, 2ap (sin 0 cos ‘p - 21~). 2q (sin 8 sin cp - I$) 

Let us carry out the following substitution: instead of the Lagrange multipliers A, pL, rl we 
shall introduce the numbers m, @,, 'p* obtained from the formulas 

mz =cz[(vt + 1)" + (ui + p)* + (05 + +]"t, cOS@, =cua-2(vt + h) 

sin@,co~cp,=a~-~(v~+ p), sin0,sincp,=am-2(v~+ n) 

The averaged Lagrangian has the form 

Let us carry out the substitution 0, v +G, F according to the formulas 

cos~=cos~cosO, + sin@sin@,cos(cp-qcp,)= G@,@,,cp --'p* 

sinBcos?j=cos@,sin @cos(cp- cp*)- sin@,cosO 

sinGsin?j=sinQsin(cp - cp*) 

The above formulas represent in fact an orthogonal transformation from the Cartesian z,y,z - 
coordinates to the Z,Q,Z-coordinates such that the direction of the Z-axis is defined by 
the angles 8,, 'p* in the 5, y, z-system; The averaged Lagrangian becomes in these variable 
coordinates somewhat simpler 



252 A.Iu. Beliaev 

- 
(21\) = (xc@ .L x2 sin2 I$$ _I_ 2m? cof+ 0) - 

2m” (1 :- ‘“l’J’“zG (O,, O,, q+, - rp.J + 2ay, - c;~L’;u~~ + h%&y?ig 

In order to find the functions 

of G,cp, 
o(O), Cp(0) we must compute the stationary points in terms 

and of the Lagrange multipliers m,O,,cp,. The stationary points in @,,w* areeasily 
found since these multipliers appear under the integral sign 

'p* = cpV + ni, O,=(-l)i@,+nj (i,j- are integers) 

The value of the expression G(O,, O,, 'pU -Ip,) at the stationary points is *I. We introduce 
the quantity 

y = * (1 + 3y,)‘lz - 1 

The sign is chosen in accordance with the sign of the above expression at the stationarypoints, 
and then we can obtain the Lagrangian in the following form: 

(2h)= (x2@ +xasitP&$- 3m2(l- c0sG)) + +(a-mm2)+ay2--~~vfuit + h%&ui~; 

The expression under the averaging sign coincides, with the accuracy of up to the notation, 

with the Lagrangian function for a heavy point on a smooth sphere. The sum of the first two 

terms of this expression is analogous to the kinetic energy, and the thirdoneto the potential 

energy. The equations of motion of a spherical pendulum have to obvious first integrals, 

namely the energy and the surface integral 

where Kand C are the integration constants. The constant K may assume values ranging from 

the minimum of the expression 

in G, to plus infinity. If K falls within this interval, then the segment [O,n] contains 

exactly two values, g= 6r and e=&, where ge = 0. In the interval between these values 

the difference between Jfand the expression (2.3) is positive, and the value of the function 

3((e) oscillates periodically between 3, and 0,. 

Next we calculate the averaged Lagrangian. Using (2.2) we obtain 

Suppose that 2n is the smallest period of e(e). Then the function B will vary over this 

period from %3,and %, and back. In this case then the first integral will be equal to 

w 
~,~~~(K,C), ~(K.C)=~(K--inz~-~j”‘d~ 

8, 

(2.4) 

If on the other hand 2n is not the smallest period, then the integral will be largerby asmany 

times, as many times 2n is larger than the smallest period, i.e. 

where 1 is a natural 

Having analyzed the formulas connezting the initial functions $‘(e) with the functions 

s,$, we conclude that the necessary condition for $9 to be periodic in 8 is, that @ (24 - 
@(Q)= 2nn_where n is an integer. A segment of length 2n/E$ can accommodate I periods of the 

function 0 [0 (&t)l as function of 5, at fixed t. It follows therefore that if 1 is large, 

then the wave length 2n& cannot serve as the measure of the "smoothness" of the rod axis. 

number. The following expression follows from the surface integral: 

x12 = 2mC 5 Cpe df3 = 2mC [I (24 - T (0)] 
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We shall therefore modify the initial formulation of the problem. Let the smallest period 

of the function e(e) be equal not to 2n/l but to a-c, and assume that the functions *'(@are 

2n-periodic. The averaging sign will denote an integral in 0 from Oto nl referred to nl 

orI as before, an integral from 0 to 2n referred to 2n (this does not affect the value of 

(2A) ). Then the averaged Lagrangian will become 

(21\) = 8xmn7D (K, C) + 8xmCnl-1 - 4m2K + (2.5) 

2y (a - m2) + a-$ - cO-P~ti~il + h2vggiuit~ 

The quantity n/l has a simple geometrical meaning in analogy with a mathematical pendulum. 

If we denote the increment of @ corresponding to 0 varying from 0 to n, i.e. over the 

period of the function B(0), by AT, then we have A7i:=2&1. The inequalities /4/n<\ Aql<22n 

hold for Ai$, andthisimplies that 1/4< (n/V<*. The cases (n/Z)% = '1, and (n/z)" = 1 correspond to 

the plane oscillations of a rod and pendulum. The integers n and 1 appear in (2.5) inthe form 

nil . This allows us to consider not only the rational values of nil, but also the re?l 

values. Moreover n!l can be regarded as a slowly varying function of E and t. 

3. Modulation equations. The demand that the Lagrangian (2.5) be stationary with 

respect to K, C and m, yields 

(3.1) 

Let us obtain the functions Q, &Dli3K, i3@/6YY in the explicit form. We perform the substitu- 

tion cos@= u in the integral (2.4) defining @, and it then assumes the form 

@=% 
[‘la(a-u)(u-b)(u--)]“l da (3.2) 

I- Uf 

where a, b and c are the roots of the polynomial K (I- u”) -I- ‘iz (1 - u*) (1 - u) - C’. We have the 
following inequalities /4/: 

c<-l.<b.<a,<l; a+b>O (3.3) 

The function 0 can be written in terms of a complete elliptic integral of the first K(k)and 

third n (n/2, n, k) kind /5/: 

@=1/Z [(2K-l+c)K(k)+(b-c)+kz,k)- 

c” (& ( n ~,n_,k)+&fI(~.n+,k))] 

k&s, a-b 
rl*=- 

a+1 

and the functions a@JaK and a@iaC can be found more conveniently by differentiating the ex- 

pression (3.2). The relations (3.1) will now become 

m=-$fzK(k) 

~f=C1/~[~“(~,n_,k)+~n(~,n+,k)] 

(?+I-c)K(k)=(b-c)+kz,k) 

(3.4) 

The third expression in (3.4) is of geometrical character: y is the measure of the "mean" com- 

pression of the rod, while Kand Cdetermine the amplitude of the oscillations. It is clear 
that in the case of an inextensible rod the above quantities must be functionally interdepend- 
ent. After solving the second and third relation of (3.4) for K and C, theaveragedLagrangian 
will be a function of a,x,y, nll,uti,yci of the form 

(2h) = 2F (CL y*X, n / 1) - CaUfV*t + hsU:EIli~g 

For the function F(a,x, y,n/l)we can obtain, e.g. the following expression: 

(3.5) 
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where a, b and e are understood to be the functions of y and nil. The modulation equations 
are obtained from the averaged variational principle 

6 S S (ZF - CD’V~V~~ + h2v&vi~~) dt d5 = 0 

and the Euler equations for this principle have the form 

(3.6) 

The first group of equations represents the equations for an extensible effective rod 
with the elastic line ri= ~~(5, t), provided that (1 + y)-ldF/ar denotes the tensile force P 
referred to the area of transverse cross section and Young's modulus. We note that following 
relation: 

(3.7) 

which can be considered as a dispersion relation connecting the tensile force, wave 
velocity f)&, wave length 2n/OE and tne parameters 7 and n/Z determining the oscillation 
amplitudes. 

4. Small amplitudes approximation. The expression (3.5) for the function F(a,x, y, 

II/Z) is written in the implicit form. To obtain the explicit expression we must solve the 
second and third equation of (3.4) which are transcendental. We shall therefore seek an 

approximate expression for this function under the assumption that the oscillation amplitudes 

are small. We replace li and C by k and h= (I- a)'/'(1 + b)-yt. According to the inequalities 

(3.3) k2 and ha vary from 0 to +I. 

Using the analogy with a mathematical pendulum we find that the rod oscillation ampli- 

tude is small if K and C are small. It canbe shown that in this case the numbers k and h 

are also small. Therefore the second third equation of (3.4) yield the following approximate 

expressions: 

y = - k2 - 2A" - ‘l,k” -f- 3.2k2 (4.1) 

(~-)“=+[l+~+A’(2r+1)] ( *;by (4.2) 

At small amplitudes the quantity r has a simple geometric meaning. The trajectory of the 

small pendulum oscillations is approximately elliptical. The number r is equal to the ratio 

of the principal semiaxes of this ellipse. For the rod this means that v is equal to the 

ratio of the largest to the smallest amplitude of the transverse oscillations. Thus r varies 

from+ito infinity. The case r=l corresponds tothemotion of a pendulum along a circumfer- 

ence. It can be shown that in this case the elastic line of therodis a helix. The case of 

an infinite r corresponds to plane oscillations. When the amplitudes are small, theninevery 

case the value of the measure of "average compression" y is almost zero and the value of (n/Z)% 

is nearly equal to l/4. 

At small amplitudes the trajectory of the mathematical pendulum is an ellipse of con- 

stantly varying orientation. It can be shown that during every "turn", i.e. on varying 0 by 

2n I the ellipse rotates by a‘small angle A= 2n(2Inl/l-I). For a rod this means that in the 

case of small amplitude oscillations the elastic line in every instant of time resembles a 

helical line flattened in one of the directions perpendicular to the axis by r times, and 

twisted in such a manner that every turn is rotated, with respect to the neighboring turn, 

by the angle A. In the linear approximation the rotation is absent, since it describes a 

nonlinear interaction between the oscillations at different planes. 

Expanding the right-hand side of (3.5) up to the fourth power in k and h and using (4.1), 

we obtain the following expression for the function F: 

2F = (-2~ + 4h4 + 8hak2 + ‘/,kd) XB + UY’ + 2’q (4.3) 

Using now (4.1) in which only the terms quadratic in k and h need to be retained, and from 

(4.2), we find the expression for k and b in terms of y and nil. Substituting these expres- 

sions into (4.3), we obtain the required expression for function F: 

2F =x2 [-2,+$(l+~--~)]+aya+Zcry (4.4) 

p = --/*Y [(4n/Z)2- I]_', Q = P-2(2pZ+ 2PVPJ - 1-l)-' 
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We note that the term 2q is small when the oscillations are almost plane. If r>3, the 
value of the term does not exceed 0.08 and decreases with increasing r as r-6. Therefore for 
such oscillations the expression (4.4) simplfies and at (nl~)*=l/~ it becomes identical to the 
expression for plane oscillations obtained in /2/. The expansion of the function A (~,n/l) in 
terms of small amplitudes has the form 

A=l_+~++&j. [4(+)8-i]*+& 

When the oscillations are almost plane, the last term is small and at r&3 it becomes smaller 
than 0.01~'. Since v<O, it follows that A>! (the penultimate term is not greaterthan 9yo/64 
by virtue of the inequality r>l) .From this it follows that the greater the amplitude, the 
higher the wave velocity. When the amplitude tends to zero, the relation (3.7) becomes a 
dispersion relation for the linear transverse waves in the rod p = a - +. 

1. 

2. 
3. 
4. 
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