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DISPERSION OF NONLINEAR SPATIAL WAVES IN A ROD”

A.Iu. BELIAEV

A nonlinear generalization of the dispersion equations of three-dimensional oscil-
lations is constructed for an inextensible rod. The dispersion equation is obtained
for waves of any amplitude in the closed form,containing a solution of a certain
system of two transcendental equations. For small amplitudes the final relationships
are given in explicit form, taking into account the nonlinearity in the first approx-
imation. The dispersion relation contains, just as in the linear case, the mean
tensile force, the wave number and frequency, as well as the parameters defining the
oscillation amplitudes, From the dispersion relation it follows that the larger the
oscillation amplitude, the greater the wave velocity. The interaction of the trans-
verse oscillations at different planes, absent in the linear case, is described, the
characteristics of the "effective" rod computed and the corresponding averaged equa-
tions constructed. A nonlinear generalization of the dispersion equation was con-
structed earlier in /1/ for the plane oscillations of a compressible rod, for the
case of small finite amplitudes.' An analogous problem was studied in /2/ for the
oscillations of an inextensible rod for the case of finite amplitudes, and in addi-
tion a concept of an "effective" rod was introduced, its characteristics computed,
and the corresponding averaged equations constructed. The present paper generalizes
the results of /2/.

1. Formulation of the problem. we consider, using the Cartesian coordinate z!, 2%, 2*
system, an infinite homogeneous inextensible rod rectilinear in the undeformed state.The elastic
line of the rod is defined by the equations (£ is the rod axis arc length, and ¢t is time)

=riE ), i=1, 2, 3

Let the inertia tensor of the transverse cross section of the rod I*® be spherical ($ is the
area of transverse cross section and 0% is the Kronecker delta)

JoB = p256ep
We shall regard the above equation as the definition of & which is of the order of the

transverse cross section diameter. The Lagrangian of the rod relative to the area of trans-
verse cross section § and Young's modulus E, has the form

20 = Wrfgras — ci'ririe (co? == EJp) (1.1)

Here p is density and the subscripts f and ¢ denote differentiation with respect to § and &
The first term in (1.1) is the energy of the flexure and the second term denotes the kinetic
enexgy of unit rod length. The condition of inextensibility has the form

I‘éﬁ%:i (1.2}

We shall consider the motions of a special type of a rod, namely, let the functions ri (g, ) be
represented in the form

r=v(E D) +P 0 &Y (1.3)

where 6 is a function of tand ¢, and Y are 2mx-periodic functions of €. The above condi-
tions do not restrict the generality of the argument. The assumptions concerning the character
of the dependence of ‘M,lh 8 in £, ¢ introduce certain restrictions, and are as follows. Let
the characteristic scales L and T of variation of the functions 6, O, uf,vg and ¢ in ¢ and ¢
at constant 6 be much larger than the characteristic scales | and 7 of variation of the func-
tions Y (B (¢ &), ¢ E) in E and ¢, respectively. In this manner we study the motions of a rod
during which the rapid oscillations ﬂf, the characteristics of which oscillate slowly, are
superimposed on the slow, smooth “"background" p'. The description of such motions is helped
by the presence of a small parameter § = max{l/L,v/T}. In the zerc approximation with respect
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Dispersion of nonlinear spatial waves in a rod 251

to this parameter the quantities 0,, 95, v,’, Ugi are constant and the motion represents a non-
linear propagating wave. The next higher approximation yields the equations for the modulation
of these guantities, and derivation of these equations is the aim of the present work. In ac-
cordance with the Whitham method /3/ the averaged Lagrangian

27

<A>=—§1—S Ad®

ut
0

must be computed from the solutions of the propagating wave type. In what follows, we shall
denote by symbol ¢ ) the integral in 6 over the interval [0, 2rl], referred to 2x. This yields
a function of 0, 0, AR v{, and of other slowly varying quantities related to the wave ampli-
tudes. The Euler equations for the action defined by the averaged Lagrangian are found to
represent the required equations for the modulations.

2, Averaged Lagrangian. Substituting (1.3) into (1.1), neglecting terms small in
8§ and integrating with respect to 0, we obtain the following expression for the averaged

Lagrangian: i _2 .4 -2 i i
(2A> = <h*Btpbewios — Oico “Peied — ¢ virse + hPoglize

The last term is proportional to 6%, but it may also turn out to be important if e.g. the
amplitude of the microoscillations is small. The condition of inextensibility (1.2) assumes

the form ; i
(Vg + Ocve) (vig + Brbio) =1
Let us make the substitution ! —0,¢
v} 4 BPg=sin@cosq, vi+OYp=sinO@sing, vi4 O0Yf=cosO (2.1)

The angles O and ¢ have the sense of polar angles of the vector tangent to the rod. We also
introduce the following notation:

2y, = vivg — 1, u=hBy, =03, %07%, v} —(1 + 2y,) cos O,

ph= (1 4 2y,)": 5in @, cos @y, vk = (1 + 2y,)s sin O, sin @,

G(0,0, ¢—q¢,)=-cosOcosB, -+ sin Osin O, cos (p — ¢,)

The expression for the averaged Lagrangian can now be written as
C2AY = (26§ 4 x* 5in? Opf — 20 [1 + o — (1 + 29,): G (8, Oy, @ — P )I> — 65 0vjvse + MPvjgrigg

Since conditions of periodicity were imposed on the functions \pi, it follows that the
Lagrangian will have to be supplemented by terms containing the Lagrange multipliers. Accord-
ing to (2.1) the extra terms can be written in the form

20A ¢cos @ — vEy, 20 <sin © cos p — vpd, 2an<sin O sinp — vf)

Let us carry out the following substitution: instead of the Lagrange multipliers A, p, n we
shall introduce the numbers m, O,, ¢, obtained from the formulas

m? =a [(v} + A + (g + p)? + (5 + PV, cosOp =oam™2 (v + A)
sin @, cos g, = am 2 (v} + p), sin O, sing, =om 2 (v} + 1)

The averaged Lagrangian has the form

(2AY = (%20} + x*sin® Bgj 4 2m’G (B, By, ¢ — Py)d —
2m? (1 + Yv)‘/‘: G (817‘ 6*‘ $p — (P*) + ZGYU - CEZU;UM + hzvégvigg

Let us carry out the substitution O, ¢ — 8, @ according to the formulas

cos 8 = cos © cos O, -} sin B sin O, cos (P —0e) =GO, 0,,9p —p,
5in® cos § = cos B, sin B cos (p — ¢,) — sin 0O, cos B
sin O sin § == sin O sin (¢ — @)

The above formulas represent in fact an orthogonal transformation from the Cartesian z, Y,z -
coordinates to the Z,J, Z-coordinates such that the direction of the Z-axis is defined by
the angles @8,, @, in the =z, ¥y, z-system:. The averaged Lagrangian becomes in these variable
coordinates somewhat simpler
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Ay = (2B - %2 sin? OF; - 2m® cos B —
2m? (1 - 2\'1,)‘/1G (G)v' 6*7 Po — Pyx) + zaYv - CJSU;UH + hzvggvigg
In order to find the functions (9), ¢ (0) we must compute the stationary points in terms

of 0, ¢, and of the Lagrange multipliers m, O,, ¢,. The stationary points in O,, ¢, are easily
found since these multipliers appear under the integral sign

Q= @, - 7, Oy=(—10, 4 nj (i,j— are integers)
The value of the expression G (0,, @,, ¢, — ¢,) at the stationary points is 1. We introduce
the quantity = = (1 + 2y,) — 1
- “Yyp

The sign is chosen in accordance with the sign of the above expression at the stationary points,
and then we can obtain the Lagrangian in the following form:

2AY = <x2(§§ 4 x2 sin“@@% —2m* (1 — cos @)) + 2y (@ — m?) -+ ay? — cazvait + hZUégvigg

The expression under the averaging sign coincides, with the accuracy of up to the notation,
with the Lagrangian function for a heavy point on a smooth sphere. The sum of the first two
terms of this expression is analogous to the kinetic energy, and the thirdone to the potential
energy. The equations of motion of a spherical pendulum have to obvious first integrals,
namely the energy and the surface integral

%2 0F + %2 sin®OPg + 2m? (1 — cos ) = 4m2K (2.2)
% sin2 By = 2mC
where K and ( are the integration constants. The constant K may assume values ranging from
the minimum of the expression
2
sin?®

sin® 5~ + (2.3)
in @, to plus infinity. If K falls within this interval, then the segment [0, n] contains
exactly two values, O = 81 and 6 = 8,, where 8 = 0. In the interval between these values
the difference between K and the expression (2.3) is positive, and the value of the function
® (B) oscillates periodically between ©, and ©,.

Next we calculate the averaged Lagrangian. Using (2.2) we obtain

C2AY = (2%*@} 4 2x? sin? Bpg — 4m2KD -
2ay® + 2y (@ — m?) — 32wy, — hvkvi —
-’;ill -+ -—:[—212 — 4m2K + 2y (@ —m?) + ay® — iy + /Lzl)égl‘igg
n n
5= 80, I,= { sin*6hds
0

0

Suppose that_2m is the smallest period of © (0). Then the function ® will vary over  this
period from O, and O, and back. In this case then the first integral will be equal to
. C Nk o=
L=""0k,0), @(K,C):%(K—sin?-f——-.—:-) ) (2.4)
% A 2 sin? ®
O
If on the other hand 2m is not the smallest period, then the integral will be larger by as many
times, as many times 2m is larger than the smallest period, i.e.

L= o, c)

where [l is a natural number. The following expression follows from the surface integral:
2

Iy =2mC § §gdb = 2mC [ (21) — F(0)]
0

Having analyzed the formulas connecting the initial functions \p‘ (6) with the functions

@, §, we conclude that the necessary condition for P to be pericdic in & is, that @ (2n)—
® (0) = 2nn_where n is an integer. A segment of length 2m/6; can accommodate ! periods of the
functlon 2] [0 ¢, 8 as function of &, at fixed ¢. It follows therefore that if ! is large,
then the wave length 2m/8 cannot serve as the measure of the "smoothness" of the rod axis.
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We shall therefore modify the initial forxmulation of the problem. Let the smallest period
of the function ®© () be equal not to 2x/l but to m, and assume that the functions V' (8) are

2 -periodic. The averaging sign will denote an lntegral in 9 from 0 to =nl referred to ml
or, as before, an integral from 0 to 2n referred to 2x (this does not affect the value of
{2A> ). Then the averaged Lagrangian will become

2AY = Bumn @ (K, C) + 8xmCnl™t — 4m*K + (2.5)
29 (o — m?) + ay? — vy + huglvag

The quantity n/l has a simple geometrical meaning in analogy with a mathematical pendulum.

If we denote the increment of § corresponding to 6 varying from 0 to =an, i.e. over the
period of the function 6 (), by AF, then we have AT=2an/l. The inequalities /4/a<|AT |<2n
hold for A§, and this implies that ¥, < (n/)2< 4. The cases (#/})*=7", and (n/l® =1 correspond to
the plane oscillations of a rod and pendulum. The integers n and ! appear in (2.5) in the form

n/l . This allows us to consider not only the rational values of n/l, but also the real
values. Moreover n/l can be regarded as a slowly varying function of § and ¢,

3. Modulation equations. The demand that the Lagrangian (2.5) be stationary with
respect to K, C and m, yields

Bom 20 4 8um =0, BT e —0 (3.1)

D 4 810 —4ym — 8Km =0

Let us obtain the functions @, d®/9K, d0/dC in the explicit form. We perform the substitu-
tion c¢os® = u in the integral (2.4) defining @, and it then assumes the form

1 —u?

(Dzi Bala—w) (@ —b) =), (3.2)
b

where g, b and ¢ are the roots of the polynomial K (1 — u?) + Y, (1 — u?) (1 —u) — C% We have the
following inequalities /4/:
e —1<<bLaC, a+02>0 (3.3)

The function @ can be written in terms of a complete elliptic integral of the first K (k) and
third II (w/2, n, k) kind /5/:

Y /g [(2A_1+c)K(k)+(b—c)n( LK) —
1

c*(m“(%n—”f)wa—a”(z k)]
e a—b a—b

a—c ' &= at1

and the functions d®/0K and o®/dC can be found more conveniently by differentiating the ex-
pression (3.2). The relations (3.1) will now become

me 2 T Kk (3.4

n a—c¢

B e )

¥+ 1—0K@=0—ol (5 k. k)

The third expression in (3.4) is of geometrical character: y is the measure of the "mean" com-
pression of the rod, while K and C determine the amplitude of the oscillations. It is clear
that in the case of an inextensible rod the above quantities must be functionally interdepend-
ent. After solving the second and third relation of (3.4) for K and C, the averaged Lagrangian
will be a function of a, %, ¥y, n/l, v, V' of the form

2Ay =2F (@, y.n /1) — cg'vivy + vk
For the function F (@, %, y,n/l} we can obtain, e.g. the following expression:

2F=,1—6"2)—K2(k)(y+1_a_b_c)+ay2+2ay (3.5)

n{a—c¢
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where a, b and ¢ are understood to be the functions of y and ~n/l. The modulation equations
are obtained from the averaged variational principle

85§ @F — citvivss + Mok dtdt =0

and the Euler equations for this principle have the form

o
-2 i _ Ve aF i
= (i Gy ), —hdn (3.6
200 OF {20 aF p K
6, oa )th 8 da - )E

The first group of equgtions represents the equations for an extensible effective rod
with the elastic line z% ='(E, ), provided that (1 + y)! dF/dy denotes the tensile force P
referred to the area of transverse cross section and Young's modulus. We note that following
relation:

1 9 e n R\ 8KXK)
P=m gy == A1) ()= sptaiey (3.7)

which can be considered as a dispersion relation connecting the tensile force, wave
velocity 0,/0;, wave length 2n/0; and tne parameters g and n/l determining the oscillation
amplitudes.

4. Small amplitudes approximation. The expression (3.5) for the function F(a, x, v,
n/l} is written in the implicit form. To obtain the explicit expression we must solve the
second and third equation of (3.4) which are transcendental. We shall therefore seek an
approximate expression for this function under the assumption that the oscillation amplitudes
are small. We replace K and C by # and A= (1 — )2 (1 + b)"*. According to the inequalities
(3.3) ¥ and A vary from 0 to 1.

Using the analogy with a mathematical pendulum we find that the rod oscillation ampli-
tude is small if K and C are small. It canbe shown that in this case the numbers k% and 2
are also small. Therefore the second third equation of (3.4) yield the following approximate
expressions:

y= — k® — 2% — 1kt - 332k2 (4.1)
nye 4T P ko 32
Qr)=frly+1+r+m4h+n], ﬂ:—%}— (4.2)

At small amplitudes the quantity r has a simple geometric meaning. The trajectory of the
small pendulum oscillations is approximately elliptical. The number r is equal to the ratio
of the principal semiaxes of this ellipse. For the rod this means that r is equal to the
ratio of the largest to the smallest amplitude of the transverse oscillations. Thus r varies
from +1to infinity. The case r=1 corresponds to the motion of a pendulum along a circumfer-
ence. It can be shown that in this case the elastic line of therodis a helix. The case of
an infinite r corresponds to plane oscillations. When the amplitudes are small, then inevery
case the value of the measure of "average compression" vy is almost zero and the value of (n/l)?
is nearly equal to 1/4.

At small amplitudes the trajectory of the mathematical pendulum is an ellipse of con-
stantly varying orientation. It can be shown that during every "turn", i.e. on varying 6 by

2n , the ellipse rotates by a small angle A= 2n(2|n|/i—1). For a rod this means that in the

case of small amplitude oscillations the elastic line in every instant of time resembles a
helical line flattened in one of the directions perpendicular to the axis by r times, and
twisted in such a manner that every turn is rotated, with respect to the neighboring turn,
by the angle A. 1In the linear approximation the rotation is absent, since it describes a
nonlinear interaction between the oscillations at different planes.

Expanding the right-hand side of (3.5) up to the fourth power in k and A and using (4.1),
we obtain the following expression for the function F:

2F = (=27 + 4A% + 8MKE - k%) 2 + ay® + 20y (4.3)

Using now (4.1) in which only the terms quadratic in k and A need to be retained, and from
(4.2), we find the expression for k and A in terms of y and n/l. Substituting these expres-
sions into (4.3), we obtain the required expression for function F:

2 3
21"=x2[——2y+—v2—(1+p—2—2q)]+ay3+2ay (4.4)
p=—3%y[(n/2— 11", g=p22p*+2p VP —1—1)2
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We note that the term 24 is small when the oscillations are almost plane. If r>3, the
value of the term does not exceed 0.08 and decreases with increasing r as %, Therefore for
such oscillations the expression (4.4) simplfies and at (n/l)} =1/, it becomes identical to the
expression for plane oscillations obtained in /2/. The expansion of the function 4 (y,n/)) in
terms of small amplitudes has the form

3 105 1 n \2 LI
a=t—pyigr—gw [4(F) 1]+

When the oscillations are almost plane, the last term is small and at r>3 it becomes smaller
than 0.014%. Since y<0, it follows that 4 >1 (the penultimate term is not greater than 9y¥/64
by virtue of the inequality r>1).From this it follows that the greater the amplitude, the
higher the wave velocity. When the amplitude tends to zero, the relation (3.7) becomes a
dispersion relation for the linear transverse waves in the rod P =a —xk.
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